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Riemannian  geometry plays an exceptional role among  geometries represented 
by symmetric tensor  g~>.~,, of  rank n. In particular, Holm's  claim that there 
exist torsion-free Christoffel coefficients on every hyperspin manifold is false. 

Recently Finkelstein (1986) has proposed a new idea in phys ics - -a  
hyperspin theory. The basic dynamical variable in the theory is the spin 
form, which is an SL(n, C)-type object, The spin form also defines the 

i 
chronometric.  While the Riemann geometry is based on a second-rank 
symmetric tensor gu~, the chronometric is an n-ary (n -> 3) symmetric form 
g~,t...,,,. A manifold M equipped with such a tensor will be called a hyper- 
manifold. (The name hyperspin manifold is reserved for the case where the 
chronometric comes f rom spin form.) Holm (1986) discussed a geometry 
of  hyperspin manifolds in complete analogy to the metric geometry. The 
purpose of  this paper  is to explain why some important concepts of  Rieman- 
nian geometry work differently in the chronometric case and, in particular, 
to point out some oversimplifications of  Holm. Discussion is confined to 
the case of  n = 3 (a generalization from 3 to n is evident). Let us begin with 
a simple algebraic consideration. 

Let rl = (~Uk) be a symmetric third-rank covariant tensor on a linear 
space V-~ R N, i.e., rl ~ V* (~ V* Q) V*, where Q denotes a symmetric tensor 
product. Assume that ~7 is nondegenerate in the following sense: the mapping 
(also denoting by ~7) 

V~(x i)" (vkt = i V* V* --, x ~,~,) ~ | (1) 

is injective (I use the Einstein summation convention).  The Riemannian 
case is an exception because (1) becomes an isomorphism of V onto V*. 
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Decomposing V*(3 V*=  L " • L '  into a direct sum, where L " = I m  'q, one 
can define (depending on the choice of  L') the linear mapping called an 
inverse (or dual) chronometric ~: V*Q V*-+ V by 

'~lL' = 0; '~lL" = 'q- '  (2) 

By the definition, r~ = ('qijk) is any solution of the equation 

n k'Jn0,. = a~ (3) 

Notice that in general 'qk~ will be symmetric only in the last two indices. 
Even if there exists a completely symmetric solution, it is nonunique. In 
the following we will fix some dual tensor ~. 

It is convenient to introduce the tensor A~ 1 = 'q"iJ'qmkt. Then (3) guaran- 
tees the following properties of  A: 

A: V*(3V*-~ V*(3V* 

ij ~ kl  _ ij 
kt . . . .  - A ,~,~ (4) 

A ~l'qmkt m~. U __ 
= 77 , A k l ' q m i j  - -  "qrnkl  

This means that A is a projection operator on a subspace L" along the 
direction L'. Immediately  one obtains that the condition 

ij 
~- klv0 = Vkl (5) 

is sufficient and necessary for an element (vo)~ V*(3 V* to be a value of 
some vector (v m = "qm'Jvo) ~ V under the action of (1). Now we proceed to 
the study of hypermanifolds.  

Let M be an N-dimensional  manifold with given G('q) structure, where 
G('q) is an 'q-preserving subgroup of G L ( N ,  ~).  Let P ( G ( ' q ) ,  M )  denote 
the corresponding subbundle of  the bundle of  linear frames. For every 
p ~ M there exists an open set V and local section 

V ~ x ~ e (x )  = {ea(x)} ~ P(  G(  "q), M)} (6) 

of  -q-frames ea(x) = e~O~. We call e~ an N-bain.  P ( G ( ' q ) ,  M )  is a g-structure 
on M (Kobayashi ,  1972), where g = (g..A), 

i j k 
gj,,.,~ = e ~, e ~e ;~ "qoJ, (7) 

is a global tensor field on M with 'q being its canonical form. The resulting 
structure may be called a hypermanifold.  In an analogy to the Riemannian 
case, one would also like to introduce a tensor field ~ = (g,.~a) and h = (h au~) 
by 

g ~ V X  ~ p . ~  ~ Z q q k  
= r.., i r..j r  

( 8 )  
= g g~ap 
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i However,  for a nontrivial P(G(~7), M ) ,  where e f  is an inverse matrix to e~. 
only g~A is a canonical global tensor field on M. This is because the group 
G ( ~ )  is in general quite different from G(~7). Of  course, for paracompact  
M, ~ and h can be chosen globally, but in many inequivalent ways. In the 
following let us assume that some fields ~ and h are fixed on M. 

Let F ~  be the connection coefficients for some g-connection on M. 
From Vg = 0 one gets 

where F~Ap =F~vgKA~. Holm (1986) has found a "unique torsion-free" 
solution of (9) in the form 

= ~(a~g~,~ (10)  ~p ,  uAp 1 1 + a vg.~,) -~ (a~g~  + a~g,.~) 

Indeed, (10) is a solution of (9) and is symmetric in the first pair of  indices. 
Unfortunately,  f ~ p  do not transform into themselves under gauge transfor- 
mations, so they depend on coordinates. In particular, (10) does not yield 
a global object. The next mistake is more ser ious-- the solutions (10) are not 
connection coefficients at all. To see this, let us observe that l ~ t ~  does not 
satisfy the constraint (5), 

Ap 
h ~f~,~,~ = f l , ~ e  (11) 

hence there do not exist connection coefficients F~, such that fl~,~,t~ = 
F~,~gz~. 

It can be seen that no algebraic solution of (10) satisfies (11). As an 
example of  a nonalgebraic solution, one can take, e.g., pure gauge, namely 
~ t ~  = e~ (Oue~)g~t3 �9 

For a paracompact  M, a g-connection always exists, but the problem 
of  finding a torsion-free ( o r  a Christoffel-like) connection on M remains 
open. 

Therefore one cannot use the geodesic principle of  general relativity. 
Instead, one can use the method of Souriau (1974) [developed by Jadczyk 
(1983)] in order to obtain particle trajectories in a space-time M with 
geometry represented by the tensor field g~A. 

Let 6g = g ' -  g be a symmetric tensor of  type (3, 0). The "golden rule" 
for matter  regularly concentrated on a curve K c M can be written in the 
form 

I ,a~A (o- ag,,~,) d t=O (12) 
k 

where x ~* and t are coordinate systems on M and K, respectively, and cr **~a 
denotes a density on K with values in symmetric tensor of  type (0, 3); 6g,,~a 
is of  the form Lrgu~a, with Y being any vector fields on M. Then, after a 
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lengthy calculat ion and using methods  developed by Jadczyk  (1983), one 
finds 

d ~ . 1 ~ v p 
t ( v  v g . ~ ) - ~ v  v v dxg.~p=O (13) 

where v ~ = d x " / d t  are velocity components .  It is remarkable  that  the same 
ebquations can be derived f rom the variat ional  principle for  the funct ional  
~a (g~v~v~v~) '/3 at. 
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